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Abstract

Road crack detection is an important task in infrastructure
maintenance and safety. Detecting cracks in roads helps iden-
tify areas that need repair and ensures road safety. Automatic
crack detection is always a challenging task due to the in-
herent complex backgrounds, uneven illumination, irregular
patterns, and various types of noise interference. This study
proposes an effective, fully connected network, that uses a
self-attention mechanism to capture contextual information
effectively. A well-optimized U-Net-based model like ours
can achieve high accuracy, with IoU scores often exceeding
0.8 or 0.9 on high-quality datasets.

1. Introduction
Image classification has a rich history that has continued
for decades. Computer vision began with edge detection
via matrices of particular values that would yield images
with similar patterns given the filter. The similarity in
patterns was exploited for classification tasks. Eventually,
neural networks started to develop their own filters which
were usually black box parameters with the ability to
classify images. Traditional neural nets were improved
when convolution neural nets (CNN) stepped in to tackle
image classification. It continues to be state of the art with
more scientists adding layers and finding tricks to bring
solutions to the vanishing gradient within deep layered
models. Although concrete crack images can come from
large datasets, which would generally capture a multitude
of conditions, crack detection shares the high noise seen in
medical imaging modalities along with the potential of the
classification of images relying on limited pixels, or fine
detail.

Over the past few years, computational medicine has

turned to models that can combine low and high-level
features along with recovering spatial information. Com-
pared to state-of-the-art CNNs, U-Net models have skipped
connections between encoder and decoder components
which allows information to flow directly from the encoder
to the decoder. Since there are shared weights between the
encoder and decoder this causes fewer parameters which
reduces the chance of overfitting. U-Nets also make sure
the feature maps of the encoder and decoder are the same
size. This isn’t always true for CNNs which causes the
loss of information during upsampling. U-Nets are better
at dealing with imbalanced datasets as the loss function
concentrates on the boundary regions between the classes,
which improves the segmentation of smaller classes. This
could be useful in concrete crack detection by triaging the
severity and possibly automating a schedule of tasks.

Even with the improvements of skipped connections
to incorporate local and global information, there are still
irreversible losses of information when max pooling is
used after each layer. On the other hand, without pooling
layers, there is a risk of overfitting, especially when dealing
with limited training data. To try and reorient the problem
a new pooling operation will be tried, wavelet U-Net
(WUNet). The WUNet uses a wavelet transform for the
downsampling and upsampling. The encoder uses discrete
wavelet transformation (DWT) which will replace the
pooling operation. This will preserve the features’ frequency
and location, which increases texture information. Inverse
wavelet transform (IWT) will be used to restore resolution
within the decoder. Since there is invertibility between DWT
and IWT no information is lost. This will be an asset when
determining the differences between small nuances in pixels
where no information has been lost.

The WUNet will have a densely cross-level connection



which will encourage features to be reused and increase
complementarity among cross-level information.

Figure 1. Road Crack

Traditionally crack detection includes manual inspection
by engineers, which can be time-consuming. An automated
crack detection would save time, and money, and prevent
engineers from going into unsafe conditions.

2. Related Work

During the 1990s and 2000s, researchers began to explore
edge detection techniques, such as the Canny edge detector
and the Sobel operator, to locate the boundaries of cracks.
Additionally, morphological operations, including erosion
and dilation, were used to refine crack segmentations
and improve the accuracy of crack boundary detection.
Researchers explored the use of texture analysis and
feature-based methods to identify cracks. Techniques
like Gabor filters and Local Binary Patterns (LBP) were
employed to capture the unique textural characteristics of
cracks, which could be used for segmentation. In recent
years, machine learning methods, including classical
algorithms like Support Vector Machines (SVM) and
Random Forest, have been applied to crack segmentation.
These methods use labeled data to train models to classify
pixels or regions as crack or non-crack. The advent of
deep learning, particularly convolutional neural networks
(CNNs), has brought a significant transformation to crack
segmentation. CNNs, such as U-Net and Mask R-CNN,
have demonstrated remarkable success in pixel-wise and
object-level crack segmentation. Transfer learning, data
augmentation, and the availability of large datasets have
contributed to the rapid progress in deep learning-based
crack segmentation. [3] outlines the development history,
research results and related applications of computer vision
in the field of concrete crack recognition.

2.1. Convolutional Neural Networks

Many techniques based on Deep Convolutional Neural
Networks have been proposed to detect road cracks, given
their remarkable success in various other computer vision
tasks. These techniques can be divided into three groups
based on how crack detection is carried out: pixel-level
segmentation, object-based techniques, and pure image
classification methods.

2.1.1 Pure Image Classification

Some researchers have carried out image-level classification
studies, which mainly solve the problem of determining
whether a surface contains cracks and, if so, what type of
cracks. Ma et al. [8] developed a deep learning method
for road detection and evaluation based on convolutional
neural network, Fisher vector coding, and UnderBagging
random forest. Zhang et al. Pang-jo Chun et al.[2] proposes
the use of a Light Gradient Boosting Machine model for
automatic crack detection and compares the results with
pix2pix-based approach. The study generates crack features
using pixel values and geometric shapes and achieves an
accuracy of 99.7%. [16] proposed a six-layer CNN network
with four convolutional layers and two fully connected
layers and used their convolutional neural network to train
99 × 99 × 3 small patches, which were split from 3264 ×
2248 road images collected by low-cost smartphones. Their
study shows that deep CNNs are superior to traditional
machine learning techniques, such as SVM and boosting
methods, in detecting pavement cracks. [11] proposed a
four-layered simple Convolutional Neural Network for
automatic crack detection which is concluded as highly
efficient yet accurate with an accuracy of 98.3%. The author
argues that the model’s simplicity enables it to work on
low-quality images that eliminates the need for costly
digital image-capturing devices. [5] uses transfer learning
to develop and validate a CNN suitable for crack detection
using images that are pre-processed. Zhang et al. (2017)
demonstrated the feasibility of CrackNet (a form of CNN).
The CrackNet unlike usual CNN algorithms uses line filters
to enhance the contrast between cracks and the background
for preprocessing with no pooling layers to remove the
downsampling. The study verified that the CrackNet CNN is
more effective than SVM and non-ML methods and that the
pooling layers may not assist in crack detection.

Apart from CNN Classification, there are other models
that separates the image into multiple smaller images
(patches) and then performs crack classification. This is
Patch-level classification. It has two main advantages; first,
we can generate more data due to the division of the image
into smaller patches. Second, it gets easier to localize the



existing cracks in the image by working on every patch of
the original image.

2.1.2 Object Detection

The classification algorithms help in identifying the presence
or absence of cracks in the images of surface irrespective
of their position. Object detection adds one step further in
classification to find the location of cracks within an image.
[6] uses 3 modules, Base architecture, Objectness Score
Identification (OSI) Network and Region of Interest (ROI)
pooling to first detect and then classify the cracks The base
architechture is inspired from Feature Pyramid Network
(FPN) to extract features from the input image before image
segmentation. Cha et al. [1] adopted the modified ZF-net as
the CNN feature extractor of Faster R-CNN. This helped in
accelerating the process of feature extraction and was more
suitable for real-time detection.

2.1.3 Pixel-level image segmentation

Pixel-level image segmentation is ideal for detailed crack
segmentation tasks where the goal is to provide precise
delineation of crack boundaries in the image. It provides
a pixel-wise binary mask that accurately identifies the
location of cracks in the image, enabling exact boundary
delineation. It is essential when the main objective is to
precisely segment and measure cracks in images, such as in
structural health monitoring and detailed defect analysis.

Zhang et al. put forward CrackNet [16], a study on
pixel-level crack detection based on CNN in earlier years.
The prominent feature of CrackNet is using a CNN model
without a pooling layer to retain the spatial resolution. Fei et
al. [4] have upgraded it to Cracknet-V, an improved version
of it with deeper architecture but fewer parameters, resulting
in improved accuracy and computation efficiency. While
CrackNet and its series versions perform well, they are
primarily used for 3D road crack images

In recent years, Semantic segmentation using fully con-
volutional networks (FCN), encoder-decoder architectures,
and related methods has become a major research focus
in the field of pixel-level image segmentation. Some of its
pioneer methods being but not limited to FCN, SegNet,
and U-Net. Zou et al. [17]proposed an end-to-end deep
convolutional neural network (DeepCrack) to realize the
automatic detection of cracks by learning high-level char-
acteristics of cracks. DeepCrack incorporates multi-scale
deep convolutions to capture linear structures at different
levels. This allows the network to learn hierarchical features
and better detect cracks with varying widths and scales. In

[12], a lightweight end-to-end pixel by pixel classification
network (SegNet) was used to detect cracks. SegNet uses
max-pooling indexes obtained during the encoder’s pooling
steps to implement non-linear upsampling in the decoder.
This approach simplifies the learning process and reduces
the need to learn how to up-sample. However, it can be
computationally intensive and may require a significant
amount of labeled data for training.

2.2. Transformer-Based Methods

In recent years, transformers have made great breakthroughs
in CV, and it was quickly introduced into the field of
crack segmentation. In [14], a novel SegCrack model
for pixel-level crack segmentation is proposed using a
hierarchically structured Transformer encoder to output
multiscale features and a top-down pathway with lateral
connections to progressively up-sample and fuse features
from the deepest layer of the encoder. Furthermore,
it adopted an online hard example mining strategy to
strengthen the detection of hard samples and improve the
model performance, resulting in precision, recall, and F1
score of 96.66%, 95.46%, 96.05%, and 92.63% respectively.
In [13], a convolutional-transformer network based on an
encoder-decoder architecture with Dilated Residual Block
(DRB) which is combined with a lightweight transformer
that captures global information to serve as an effective
encoder and a Boundary Awareness Module (BAM) was
proposed. The DRB captures the local detail of cracks and
adjusts the feature dimension for other blocks as needed
whereas the BAM learns the boundary features from the
dilated crack label. This study proposes [15] proposes a
dual-encoder network fusing transformers and convolutional
neural networks (DTrC-Net) to alleviate the influence of
irregularly shaped cracks, complex image backgrounds,
and to overcome limitations in acquiring global contextual
information.

Transformers have shown promising results and, in
some cases, have outperformed traditional convolutional
neural networks (CNNs) by leveraging the advantages
of self-attention for capturing long-range dependencies
and modeling global image information. Transformer
architectures need more training data to achieve equal or
improved accuracy than CNNs.[10]

The proposed model tries to leverage accuracy by using
the best of both. It uses the same attention mechanism along
with traditional convolutional layers to improve accuracy in
the semantic segmentation of road cracks.



3. Method

3.1. Network Architechture

The WU-Net model is named for it’s U-like architecture.
2 The WU-Net is defined by the contracting path and the
expanding path. On the contracting path, it can be seen that
there is a combination of convolution layers, common in
CNNs, and DWT. This combination captures contextual
information and downsamples the feature maps. ReLU
activation functions are used within the hidden layers of the
contracting path to address the vanishing gradient problem.
It also employs a cross-level fusion strategy to increase
the efficiency of feature map reuse and to fuse feature
information across the downsampling level.

The expansive path is composed of transposed convolu-
tional layers to upsample the feature maps, which recover
the original spatial resolution of the image. There are
concatenations from the contracting feature maps to the
expansive feature maps; these are referred to as skipped
connections. The skipped connections allow the model to
combine the low-level and high-level features. However,
the problem with skip connections is that low-level feature
maps are simply passed backwards, and there is a significant
amount of redundancy in these feature maps. The naive
skip connections cannot distinguish the more valuable and
important parts of the information. To overcome this, we
employ self-attention modules, which can assign more
weight coefficients to important regions to make the network
more focused on specific local regions.

The activation for the final layer is a softmax activation.
Softmax is a popular activation function due to it simplifying
the training process with smoother gradients which can
lead to faster convergence time. Although the goal of the
segmentation is to produce a binary mask, softmax is
often used to help normalize the outputs and provide a
probabilistic interpretation. This would generally lead to the
softmax function producing a two-dimensional probability
distribution that sum to one. However, a U-Net with a
softmax is able to produce a more nuanced output than a
simple binary classification. For image segmentation, the
model may be able to predict 20% likely one one class
and 80% to another which is useful when distinguishing
between classes of finely detailed pixels.

While training, a 50% dropout at the end of the contract-
ing path along with the l2 regularizer with lambda as 1e− 4,
helps reduce the overfitting of the model.

Figure 2. The architecture of a WU-Net.

3.1.1 Wavelet Transformations

The contracting path employs both convolutional layers
and discrete wavelet transform (DWT). Given an image
x, we use 2D DWT with four convolutional filters, i.e.
low-pass filter fLL, and high-pass filters fLH , fHL, fHH ,
to decompose x into four subband images, i.e. xLL, xLH ,
xHL, and xHH .

We have used Haar wavelet transformation because of its
simplicity with stride 2. The filters here are defined as fLL=1 1
1 1

,fLH=

−1 −1
1 1

,fHL=

−1 1
−1 1

,fHH=

 1 −1
−1 1

.

The operation of DWT is defined as xLL = (fLL⊛x) ↓2,
xLH = (fLH ⊛ x) ↓2, xHL = (fHL ⊛ x) ↓2 and
xHH = (fHH ⊛ x) ↓2, where ⊛ denotes convolution
operator, and ↓2 means the standard downsampling operator
with factor 2. In other words, DWT mathematically involves
four fixed convolution filters with stride 2 to implement the
downsampling operator.

Moreover, according to the theory of Haar transform [9],
the (i, j)-th value of xLL, xLH , xHL, and xHH after 2D
Haar transform can be written as:

xLL(i,j)=x(2i−1,2j−1)+x(2i−1,2j)+x(2i,2j−1)+x(2i,2j)

xLH(i,j)=−x(2i−1,2j−1)−x(2i−1,2j)+x(2i,2j−1)+x(2i,2j)

xHL(i,j)=−x(2i−1,2j−1)+x(2i−1,2j)−x(2i,2j−1)+x(2i,2j)

xHH(i,j)=x(2i−1,2j−1)−x(2i−1,2j)−x(2i,2j−1)+x(2i,2j)

Figure 3 shows an illustration of 2 levels of DWT.

Although the downsampling operation is deployed,
due to the biorthogonal property of DWT, the original
image x can be accurately reconstructed without infor-
mation loss by the Inverse Wavelet Transform, IWT, i.e.,
x = IWT (xLL, xLH , xHL, xHH). For the Haar wavelet,
the IWT can defined as:



x(2i−1,2j−1)=(xLL(i,j)−xLH(i,j)−xHL(i,j)+xHH(i,j))/4

x(2i,2j−1)=(xLL(i,j)−xLH(i,j)+xHL(i,j)−xHH(i,j))/4

x(2i−1,2j)=(xLL(i,j)+xLH(i,j)−xHL(i,j)−xHH(i,j))/4

x(2i,2j)=(xLL(i,j)+xLH(i,j)+xHL(i,j)+xHH(i,j))/4

These transformations can be sequentially decomposed
by DWT for further processing, resulting in multi-level ar-
chitecture.

Figure 3. Discrete Wavelet Transformations

DWT can provide a compact representation of both high
and low-frequency components in the image. While both
multi-level architecture and CNN are capable to being fully-
functional on their own, in some architectures, CNNs and
DWT can be used in conjunction to leverage both spatial
hierarchies (learned by CNNs) and frequency information
(provided by DWT)[7]. The key idea is to insert CNN blocks
into the architecture before (or after) each level of DWT to
replace the pooling layers4.

Figure 4. Discrete Wavelet Transformations

3.1.2 Cross-level Fusion

As shown in Fig. 2, we use the CLF strategy in four
downsampling layers and an ASPP module as shown in Fig.
6 to ensure enhanced cross-level feature connection and
complementarity between cross-level information.

Figure 5. Cross-level Connections

For each feature map before the downsampling operation,
we use the convolution with specific strides to downsample
it and concatenate it with the corresponding feature map
obtained by DWT. The downsampled layer is formed
by convolving the previous layer’s output with strides 2
concatenated with the one formed by convolving the layer
before the previous’s layer output with stride 4 and so on, as
shown in fig. 5

Figure 6. Atrous spatial pyramid pooling

The four levels of features from the downsampling path
are combined with the four scale features obtained using
dilated convolution at rates 2,4, and 6 along with one level
with average pooling and bilinear upsampling in the ASPP
to produce features of nine scales. Thereby, the network not
only obtains five scale features from high-level semantic
information but also texture and position information from
CLF in decoding.

3.1.3 Attention Feature Fusion Module

Attention mechanisms, including self-attention, have been
employed to capture long-range dependencies and relation-
ships within an image. The architecture employed here is
relatively simple, as shown in Fig 7.

Figure 7. Attention Feature Fusion

Key, Query, and Value transformations are applied to



the input tensor x using Conv2D layers. The block first
calculates attention scores by measuring the similarity
between the Query vector and the Key vector using a
dot product. The attention scores are normalized using
a softmax function to obtain attention weights. These
weights represent how much focus should be given to each
element in the sequence. The Value vectors are multiplied
by their corresponding attention weights and summed up.
This weighted sum becomes the output. To make it fully
functional, we add a convolution layer followed by batch
normalization, which is then element-wise added to the
input. This is followed by a ReLU activation.

This helps the model know which features to pay
attention to before passing to convolution layers present at
that level.

4. Experiment
4.1. Data

The dataset consists of surface cracks for segmentation from
Kaggle. The sample contains 11,200 images that are merged
from 12 available crack segmentation data sets. The images
have been segmented to create a mask of the cracked portion.

4.2. Implementation Details

We implemented the model using TensorFlow with GPU.
The model was trained for 30 epochs using 5-fold cross-
validation, with the validation set as 20% of the data. The
model is compiled using the Adam optimizer with the
learning rate set as 1e-4. The buffer size is set as 1000 and
the batch size as 8.

The input image size is adjusted to (256,256) pixels, and
the encoder uses convolutional layers with a convolution
kernel size of 3. Early stopping with patience as 5 is used to
help generalize the model.

4.3. Evaluation

The loss function chosen is binary cross entropy (BCE).
BCE measures the difference between predicted probabil-
ities and the ground truth labels. BCE is commonly used
for binary classification problems, like image segmentation.
The main function of BCE is to enforce class balance. The
combination of BCE and softmax makes this model ideal
for tasks where a probabilistic interpretation of the results is
necessary.

It is used along with metrics, Dice coefficient and IOU
both of which help measure the overlap of the predicted mask

with the ground-truth mask, to evaluate the performance and
fine-tune the model.

5. Results and Discussion
The evaluation for a U-Net binary mask considers the
predicted mask against the ground truth mask for each pixel
in the image. In binary mask problems, this means that 1 is
equivalent to foreground while 0 is background. This yields
a percentage of pixels that were correctly classified.

5.1. Metrics

5.1.1 Dice Coefficient

The Dice Coefficient, or F1 Score, measures the similarity
between the two sets. It is calculated using the following
formula:

DiceCoefficient =
2|A ∩B|
|A|+ |B|

. (1)

Where intersection is the number of pixels that are
common to both the predicted and ground truth sets and the
total number of pixels in both sets is the sum of pixels in the
predicted set and the ground truth set.

The Dice Coefficient ranges from 0 to 1, with 0 indicating
no overlap between the sets (complete dissimilarity) and 1
indicating a perfect match (complete similarity). Higher
Dice Coefficient values correspond to better segmentation
performance. In the context of image segmentation, the sets
being compared are often the pixels predicted by a model
(the segmentation mask) and the true segmentation mask
(the ground truth). The Dice Coefficient provides a measure
of how well the predicted segmentation aligns with the
actual segmentation.

5.1.2 Intersection over Union

This metric is commonly used in image segmentation and
object detection tasks. IOU measures the overlap between
the predicted and ground truth regions. It is also known as
the Jaccard Index. The IOU is calculated using the formula:

IOU =
A ∩B

A ∪B
. (2)

Where,
Intersection: Intersection is the area (or volume in 3D)
common to both the predicted and ground truth regions.
Union: Union is the total area (or volume) encompassed by
both the predicted and ground-truth regions.



IOU values range from 0 to 1, with 0 indicating no overlap
(complete dissimilarity) and 1 indicating a perfect match
(complete similarity). It provides a measure of the spatial
overlap between the predicted and true regions, offering
insights into the accuracy of the segmentation.

5.1.3 Area Under Curve

Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC) are commonly used metrics for evaluating
the performance of binary classification models. They are
particularly useful when dealing with imbalanced datasets.

The ROC curve is a graphical representation of the
model’s ability to discriminate between the positive and
negative classes across various threshold values. The curve
represents the trade-off between true positive rate and false
positive rate as the classification threshold varies. AUC
represents the area under the ROC curve. It provides a single
scalar value summarizing the overall performance of the
model.

AUC ranges from 0 to 1. A model with an AUC of 0.5
performs no better than random chance, while a model with
an AUC of 1.0 indicates perfect classification. Generally,
a higher AUC indicates better discrimination ability of the
model.

5.2. Results

The model is trained for 30 epochs, showing a loss
reduction8. This method would hold out 10% of the data as
a testing set that was not used in the training of the models.
The performance of the model on the test dataset is detailed
in Table 1.

The loss is calculated as:

BCE = − 1

N

n∑
i=1

[Yi log pi + (1− Yi) log (1− pi)] (3)

Figure 8. Results: Loss and Performance Metrics on Training and
Validation sets

Table 1. Model Performance

Dice Coefficient 0.8

IOU 0.64

Area under the curve (AUC) 0.88

The model has led to an increase in Test F1-score by 0.4
as compared to a normal ResNet model.

The masks predicted are visualized as:

Figure 9. Results: Predicted masks

6. Future Work
6.1. Data Augmentation

Augmentation is a technique used in deep learning to
artificially increase the diversity of the training dataset by
applying various transformations to the existing images.
The goal is to improve the model’s generalization and
robustness by exposing it to different variations of the input



data. Common image augmentations include:
Rotation: Randomly rotating images to different angles.
Flip: Flipping images horizontally or vertically.
Zoom: Randomly zooming in or out of images.
Translation: Shifting images horizontally or vertically.
Brightness and Contrast: Adjusting the brightness and
contrast of images.
Color Jitter: Introducing random variations in color.

Augmentation is particularly useful when dealing with
limited training data, as it helps prevent overfitting and
improves the model’s ability to handle variations in the input.

6.2. Transfer Learning

Transfer learning involves leveraging knowledge gained
while solving one problem and applying it to a different
but related problem. In the context of deep learning, transfer
learning often refers to using pre-trained models on large
datasets for a specific task and adapting them to a new task
with a smaller dataset. This can help increase the accuracy
of the predictions.

7. Conclusion
Crack segmentation is still an important research field in the
engineering field of image recognition technology, a task
that is of great significance for prolonging the service life
of roads and enhancing safety. To help mitigate this issue,
we have developed a WU-Net model with dense cross-level
connections and self-attention mechanisms to capture the
fine details as well as the context information necessary for
crack segmentation.

8. Comments
This approach took effort and time to train 3 separate models
ResNet, Unet, and the final model to help see the contribution
of each of the modules, if batch normalization was required,
and a lot of fine-tuning with the number of layers, etc. to help
arrive at this model. This model was designed primarily for
biomedical imaging and then applied to crack segmentation
due to a lack of cleaned data. The primary design was by
Brittany, and then the incorporation of CLF and self-attention
modules was done by me.
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