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1. Introduction

1.1. Problem Statement

Brain tumor1 image segmentation plays a crucial role
in medical diagnosis and treatment planning, offering
insights into tumor characteristics and assisting clinicians in
making informed decisions. This task involves partitioning
magnetic resonance imaging (MRI) scans of the brain into
different regions, such as tumor core, peritumoral edema,
and healthy brain tissue. Accurate segmentation is essential
for quantifying tumor size, assessing treatment response,
and guiding surgical interventions.

Figure 1. Manual annotation through expert raters. Shown are im-
age patches with the tumor structures that are annotated in the
different modalities (top left) and the final labels for the whole
dataset (right). Image patches show from left to right: the whole
tumor visible in FLAIR (A), the tumor core visible in T2 (B), the
enhancing tumor structures visible in T1c (blue), surrounding the
cystic/necrotic components of the core (green) (C). Segmentations
are combined to generate the final labels of the tumor structures
(D): edema (yellow), non-enhancing solid core (red), necrotic/cystic
core (green), enhancing core(blue).[16]

The proposed deep learning model for brain tumor seg-
mentation is of profound interest due to its potential to fun-
damentally transform clinical practice. By automating the
segmentation process, it offers the promise of expedited and
precise identification of tumor regions within neuroimaging
data. This not only streamlines treatment planning proce-
dures but also mitigates inter-observer variability, thus en-

hancing the reliability and consistency of tumor delineation.
Furthermore, the integration of advanced deep learning tech-
niques in medical image analysis underscores the interdisci-
plinary nature of this research endeavor, offering compelling
avenues for collaboration between computer science and
medical domains.

1.2. Challenge

Brain tumor segmentation presents significant challenges
due to the complex and heterogeneous nature of tumors, vari-
ability in imaging data, and inherent limitations of medical
imaging technology. Tumors exhibit diverse characteristics
in terms of size, shape, and appearance, making it difficult
to accurately delineate tumor boundaries. Moreover, MRI
scans, the primary modality for brain imaging, often suffer
from noise, artifacts, and limited resolution, further compli-
cating segmentation tasks. Additionally, tumors may overlap
with normal brain structures, leading to ambiguity in seg-
mentation. Inter-observer variability and clinical variability
add another layer of complexity, requiring segmentation al-
gorithms to be robust and adaptable. Overcoming these chal-
lenges demands the development of sophisticated algorithms
that can handle tumor heterogeneity, noise, and variability in
imaging data while providing accurate and reliable segmen-
tation results to assist clinicians in diagnosis and treatment
planning. Moreover, the imperative to achieve high levels of
accuracy while preserving computational efficiency under-
scores the demand for innovative methodologies capable of
balancing computational complexity with clinical utility.

1.3. Importance

The proposed research holds profound significance within
the realm of neuro-oncology, offering tangible benefits for
both patients and healthcare providers. By advancing the
state-of-the-art in brain tumor segmentation, the proposed
deep learning model stands to catalyze paradigm shifts
in clinical decision-making and patient management.
Rapid and accurate tumor delineation not only expedites
treatment planning processes but also empowers clinicians
with quantitative insights into tumor burden and spatial
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distribution. Furthermore, the proposed model’s potential to
reduce diagnostic turnaround times and enhance treatment
efficacy holds implications for resource optimization and
improved patient outcomes. Thus, by addressing the pressing
clinical need for reliable and efficient tumor segmentation
methodologies, this research contributes to the overarching
goal of advancing precision medicine in neuro-oncology.

1.4. Data to Use

The RSNA-ASNR-MICCAI BraTS 2021 challenge utilizes
multi-institutional pre-operative baseline multi-parametric
magnetic resonance imaging (mpMRI) scans, and focuses
on the evaluation of state-of-the-art methods for (Task
1) the segmentation of intrinsically heterogeneous brain
glioblastoma sub-regions in mpMRI scans.

MRI scans are essential imaging modalities in med-
ical diagnosis, particularly for brain imaging. Among
the four main types—T1-weighted, T1-weighted with
gadolinium contrast, T2-weighted, and FLAIR—each
provides unique information about brain anatomy and
pathology. T1-weighted scans offer detailed anatomical
information, while gadolinium-enhanced T1-weighted scans
enhance lesion visibility. T2-weighted scans highlight
tissue water content differences, and FLAIR scans suppress
cerebrospinal fluid signal, aiding in lesion detection near
CSF-filled spaces. Together, these scans enable compre-
hensive assessment and diagnosis in neurological conditions.

BraTS 2021 Dataset Training Set consists of scans from
1250 patients spread across 4 MRI Scans: T1, T1Gd, T2 and
FLAIR. Fused Expert Segmentation of 4 Classes:
1. Non-Tumor (Not Shown) [0]
2. Edema: Green [1]
3. Neurotic and Non-enhancing Tumor: Yellow [2]
4. GD-Enhancing Tumor: Blue [3]
And when using it, we combined these three labels(back
ground did not change) as three new labels tc, wt and et. And
tc means tumor core, wt means whole tumor, et means en-
hancing tumor. These label is transformed from the original
one.

2. Related Work

In the early stages of brain tumor segmentation research,
traditional image processing techniques such as threshold-
ing, region growing, and edge detection were commonly
used[8]. While these methods were straightforward, they
often struggled with handling noise, variability in tumor
appearance, and complex tumor shape. This study[1] uses
a filter with different wavelet bands for noise reduction
and to enhance the region of interest (ROI), along with PF

clustering for segmentation purposes.

2.1. Machine-learning based Approaches

With the advancement of machine learning techniques,
researchers began turning to supervised learning algorithms
to tackle the task of brain tumor segmentation. These
algorithms, including support vector machines (SVMs),
random forests (RF), k-nearest neighbors (KNN), and
linear discriminant analysis (LDA), offer the capability to
learn discriminative features directly from the data, thereby
improving segmentation accuracy.These methods showed
improvements over traditional techniques by learning
discriminative features directly from the data. In a study by
[25], various machine learning algorithms, namely KNN,
RF, SVM, and LDA, were employed to classify MR brain
image features. The research concluded that SVM, with
an accuracy rate of 90%, outperformed other algorithms
in classifying brain image features effectively. Similarly,
in another study [12], multimodal features such as texture,
morphological, entropy-based, Scale Invariant Feature
Transform (SIFT), and Elliptic Fourier Descriptors (EFDs)
were extracted from a brain tumor imaging database. Robust
machine learning techniques, including Support Vector
Machine (SVM) with polynomial, Radial Base Function
(RBF), and Gaussian kernels, as well as Decision Tree (DT)
and Naı̈ve Bayes, were employed to detect tumors based on
these features. The study found that Naı̈ve Bayes followed
by Decision Tree yielded the highest detection accuracy,
particularly when considering entropy, morphological, SIFT,
and texture features.

Brain tumor detection involves identifying the presence
or absence of a tumor within medical images, typically
using binary classification techniques. Classification aims
to categorize tumors into different types or grades based
on their characteristics, assisting in treatment planning
and prognosis. Segmentation, on the other hand, involves
delineating the boundaries of tumors within images,
providing detailed spatial information essential for surgical
planning and monitoring tumor progression.

2.2. Convolution-based Segmentation Methods

The advent of deep learning, particularly convolutional
neural networks (CNNs), revolutionized medical image
segmentation, including brain tumor segmentation. CNNs
handle 3D data typically extended 2D convolutional
operations to 3D by using 3D convolutional kernels. These
3D kernels operate across the three spatial dimensions of
the input volume, allowing the network to capture spatial
relationships in 3D space. Pooling layers such as max
pooling or average pooling were also extended to 3D to
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reduce spatial dimensions and extract relevant features
from volumetric data. This article[13] presents a deep
convolutional neural network (CNN) to segment brain
tumors in MRIs. The network architecture consists of
multiple neural network layers connected in sequential
order with the feeding of convolutional feature maps at
the peer level. This paper[4] introduces a two-pathway
model for brain tumor image segmentation, integrating
average and max pooling layers to capture diverse features.
Additionally, it incorporates 1×1 convolutional kernels and a
fully connected Conditional Random Field (FCRF) mixture
model to enhance segmentation accuracy by leveraging
global context information.

Models like U-Net[19], introduced by Ronneberger et al.
in 2015, became popular for their ability to capture spatial in-
formation and hierarchical features through encoder-decoder
architectures with skip connections. [6] uses the UNet
architecture, one of the deep learning networks, as a hybrid
model with a pre-trained DenseNet121 architecture for the
segmentation process, leading to improved performance as
compared to the then commonly used models.”Automatic
Brain Tumor Segmentation using Cascaded Anisotropic
Convolutional Neural Networks”[22] proposes a novel
approach to brain tumor segmentation leveraging cascaded
anisotropic convolutional neural networks (CNNs). This
method aims to enhance the segmentation accuracy by
incorporating anisotropic convolutions, which adapt to
the varying resolutions of medical images. The cascaded
architecture iteratively refines the segmentation results,
leading to improved performance in delineating brain tumor
boundaries in medical imaging data.

2.3. Transformer-based Segmentation Methods

CNNs, however, have limited ability to capture long-range
dependencies and global context in images, which can
be crucial for tasks such as image captioning or dense
prediction tasks like brain tumor segmentation. More re-
cently, transformers, initially designed for natural language
processing tasks, have been adapted to medical image
analysis, including brain tumor segmentation. Models like
Vision Transformer (ViT) and Swin Transformer have shown
promise in capturing spatial dependencies and extracting
meaningful features from medical images. This paper[20]
introduced ViTBIS which leverages the Vision Transformer
(ViT) architecture, originally designed for natural image
processing, to effectively segment biomedical images by
transforming the input images into sequences of patches
and processing them through self-attention mechanisms,
thereby capturing both local and global features for accurate
segmentation.

2.4. Hybrid Segmentation Methods

Researchers have also explored hybrid architectures that
combine the strengths of CNNs and transformers for
brain tumor segmentation. These models leverage the
feature extraction capabilities of CNNs and the attention
mechanisms of transformers to achieve state-of-the-art
performance. TransUnet[5] and TransBTS[23] are a kind
of hybrid model in combining CNN and Transformer,
using successive convolutional layers and Transformer
in the encoder for feature extraction and transposed
convolution for upsampling operations in the decoder
to recover spatial resolution for semantic segmentation.
UnetR[9], on the other hand, used ViT layers as encoders
and convolutional layers as decoders to build the network.
The method achieved excellent performance on several
tasks, but the model resulted in a large number of parameters
due to a large number of ViT layers used. In order to
reduce the number of parameters, there have been several
attempts since. VT-Unet [18] is a lightweight model for
segmenting 3D medical images in a hierarchical manner. It
introduces two self-attention layers in the encoder to capture
local and global information. This model also introduces
window-based self-attention, cross-attention modules, and
Fourier position coding in the decoder part to significantly
improve accuracy and efficiency. Cotr [24] designed a
deformable transformer encoder, which focuses on only
a small portion of the key location feature information,
which also greatly reduces the computational complexity
and spatial complexity. The experimental results show that
this method has a significant improvement in effectiveness
compared to other transformer and CNN combination
methods. In SwinBTS architecture[14], the authors leverage
the use of Swin Transformer to initially extract the image
features while using the CNN as the backbone network in
both its encoders and decoders. Similarly, Swin-UNETR[10]
combines the Swin Transformer with the U-Net architecture,
utilizing the Swin Transformer for feature extraction and the
U-Net structure for segmentation.

Various other architectures have employed Swin
transformers due to shift windows mechanism, which have
shown promising results as compared to vision transformers,
particularly in the field of medical image segmentation. DS-
TransUNet[15] benefits from the self-attention computation
in swin transformer and the designed dual-scale encoding,
which can effectively model the non-local dependencies and
multiscale contexts for enhancing the semantic segmentation
quality of varying medical images. In this article[7], a
novel method called Swin Pyramid Aggregation network
(SwinPA-Net) is proposed by combining two designed
modules, named dense multiplicative connection (DMC)
module and local pyramid attention (LPA) module, with
Swin Transformer to learn more powerful and robust



features.

The U-Net structure, while successful, still faces
challenges in segmentation performance due to the semantic
gap between encoding and decoding stages. This gap can
hinder feature fusion, as low-level features crucial for edge
segmentation and deep-level features essential for object
recognition may not be effectively explored.

Inspired by swin-unet 3D[3][2], and Swin-UNETR is
our model which incorporates an attention mechanism
and spatial squeeze and excitation to enhance the local
features, and at the same time working to decrease this gap
between encoder and decoder. While the Swin Transformer
backbone is effective at capturing long-range dependencies,
further improvements may be necessary, especially in
scenarios where spatial relationships across distant regions
are critical for accurate segmentation. Spatial Attention can
enhance the model’s ability to capture such dependencies
by facilitating direct communication between tokens across
spatial dimensions.

Continued advancements in these models aim to
provide clinicians with more accurate and reliable tools for
diagnosing and treating brain tumors, ultimately leading to
improved patient outcomes and quality of life.

3. Proposed Method

3.1. Architecture

The architecture is shown in the figure 3. It is defined
by the contracting path and the expanding path. On the
contracting path, it can be seen that it has swin transformers.
This combination captures contextual information and
downsamples the feature maps.

Figure 2. Swin-UNETR Architecture[10]

Figure 3. Attention Swin-UNETR Architecture

3.1.1 Encoder

The encoder comprises of Swin transformer that blocks that
initially divides the input data into non-overlapping 2×2×2
patches and uses a patch partition layer to create windows
of the desired size for computing self-attention. Considering
multi-modal MRI images with 4 channels, the encoder will
have a patch size of 2×2×2 and a feature dimension of 32
(2×2×2×4=32). The size of the embedding space C is set to
48, and the encoder is divided into 4 stages, each containing
2 transformer blocks, making the total number of layers in
the encoder L=8. At the end of each stage, a patch merging
layer will be utilized to decrease the resolution of feature
representations by a factor of 2 and group patches with a
2×2×2 resolution and concatenate them, resulting in a 4C-
dimensional feature embedding. Subsequently, the feature
size of the representations will be reduced to 2C with a
linear layer. Each stage also has a CNN based basic block
comprising of 2 convolution layers before being given to
decoder.

3.1.2 Decoder

The decoder has 2 residual blocks consisting of 3*3*3 con-
volution layers in addition to Attention block and Squeeze
and Excitation block. This is done in several stages com-
prising of: 1. Increasing the resolution of feature maps by
a factor of 2 using a deconvolutional layer. 2. Employing
attention to the output with features from the previous stage
to enhance feature integration across resolutions. 3. Feed-
ing the reshaped features into a residual block comprising
two 3×3×3 convolutional layers and squeeze and excitation
block.

The final segmentation outputs are computed by using a
1×1×1 convolutional layer and a sigmoid activation function.

3.1.3 Swin transformer

The architecture has Swin transformer4 as its backbone. It is
composed of multiple stages, each containing 2 Transformer
blocks. Unlike traditional Transformers, which process
images globally and require extensive computational
resources, the Swin Transformer adopts a shifted window
mechanism to reduce computation. This mechanism allows



each token to attend only to nearby tokens within a local
window, significantly reducing the number of pairwise
interactions. Furthermore, the Swin Transformer employs
patch partitioning, dividing each input patch into smaller
local windows to capture fine-grained spatial information
and long-range dependencies.

Figure 4. Swin Transformer[21]

Within each stage, the model processes images at multiple
resolutions, enabling it to capture both global context and
fine details across different scales.

3.1.4 Attention

Attention mechanism similar to that in attention-unet is em-
ployed to capture long-range dependencies and relationships
within an image instead of concatenation. The architecture
employed here is relatively simple, as shown in Fig 5. It
operates on two sets of feature maps known as the ”query”
tensor (g) and the ”key” tensor (x). These tensors represent
different levels of abstraction or spatial information within
the network. It computes attention weights based on
the similarity between features in the ”query” and ”key”
tensors, using an attention mechanism implemented with
convolutional layers and activation functions, sigmoid and
leaky ReLU.The attended feature map is combined with
the original input tensor to produce the final output of the
AttentionBlock. It allows the network to selectively attend
to relevant information while suppressing irrelevant features,
improving its ability to capture spatial dependencies.

Figure 5. Attention[17]

3.1.5 Squeeze and Excitation Block

This aims to capture both spatial and channel-wise de-
pendencies within feature maps, thereby improving the

Figure 6. Squeeze and Excitation Block[11]

discriminative ability of the network. The structure of
the SE building block is depicted in fig. 6. Initially, it
has 2 blocks comprising of 3*3*3 convolution layer. The
features obtained U are first passed through a squeeze
operation, which produces a channel descriptor by ag-
gregating feature maps across their spatial dimensions
(H × W). The function of this descriptor is to produce
an embedding of the global distribution of channel-wise
feature responses, allowing information from the global
receptive field of the network to be used by all its layers.
The aggregation is followed by an excitation operation,
which takes the form of a simple self-gating mechanism
that takes the embedding as input and produces a collection
of per-channel modulation weights. These weights are
applied to the feature maps U to generate the output of
the SE block. The output is then combined with the input
from the bottom layer to generate the final output of the layer.

4. Evaluation

The evaluation considers the predicted mask against the
ground truth mask for each pixel in the image. In binary
mask problems, this means that 1 is equivalent to foreground
while 0 is background. This yields a percentage of pixels that
were correctly classified. However, multi-category problems
consider all categories. In the BRATS Challenge, we
consider voxels as categories and evaluate the performance
using the metrics described below.

4.1. Metrics

4.1.1 Dice Coefficient

The Dice Coefficient, or F1 Score, measures the similarity
between the two sets. It is calculated using the following
formula:

DiceCoefficient =
2|A ∩B|
|A|+ |B|

. (1)

Where intersection is the number of pixels that are
common to both the predicted and ground truth sets and the
total number of pixels in both sets is the sum of pixels in the



predicted set and the ground truth set.

The Dice Coefficient ranges from 0 to 1, with 0 indicating
no overlap between the sets (complete dissimilarity) and 1
indicating a perfect match (complete similarity). Higher
Dice Coefficient values correspond to better segmentation
performance. In the context of image segmentation, the sets
being compared are often the pixels predicted by a model
(the segmentation mask) and the true segmentation mask
(the ground truth). The Dice Coefficient provides a measure
of how well the predicted segmentation aligns with the
actual segmentation.

When applied to multi-class segmentation tasks, the Dice
coefficient is calculated for each class separately, and then
averaged to obtain a single value representing the average
performance across all classes. This metric is often referred
to as the average Dice coefficient or mean Dice coefficient
(mDSC).

To calculate the average Dice coefficient across N classes,
we compute the Dice coefficient for each class and then take
the average. The formula for calculating the mDSC is:

mDSC =
1

N

N∑
i=1

DSCi (2)

Where, DSCi is the Dice coefficient for class i and N is the
total number of classes.

This average Dice coefficient provides a comprehensive
assessment of the segmentation model’s performance
across all classes, taking into account both the accuracy
and the spatial overlap of the predicted and ground truth
segmentations.

4.2. Loss

The soft Dice loss is a variant of the Dice coefficient
used as a loss function in training neural networks for
segmentation tasks. It is particularly common in medical
image segmentation due to its effectiveness in handling
class imbalance, which is often prevalent in medical
data. It penalizes deviations between predicted and
ground truth probabilities, encouraging the model to
produce probability distributions that align better with
the ground truth while considering all classes simultane-
ously. It provides a differentiable loss function that can
be optimized using gradient descent methods during training.

It is calculated as follows:

SoftDiceLoss = 1−
2×

∑N
i=1 pi × gi∑N

i=1 p
2
i +

∑N
i=1 g

2
i

(3)

Where, pi represents the predicted probability (or value)
for class i, gi represents the ground truth label for class i,
and N is the total number of classes.

By using soft Dice loss as the optimization objective,
neural networks can learn to produce segmentation outputs
that optimize spatial overlap and accuracy simultaneously,
which is crucial for tasks like medical image segmentation
where accurate delineation of structures is vital.

5. Implementation
The model was trained for about 180 epochs. The input
image size of each mode is 240 × 240 × 155, which has been
aligned and resampled to a 1 × 1 × 1 mm isotropic resolution
and skull-stripped. The labels include a background
(Label 0) and three tumor categories, namely necrotic and
non-enhancing tumors (Label 1), peritumoral edema (Label
2), and enhancing tumors (Label 4). The three categories
were combined into three nested sub- regions: whole tumor
(WT, Labels 1, 2, 4), tumor core (TC, Labels 1, 4), and
enhancing tumor (ET, Label 4).

3 separate mechanisms attention, self-attention, and
spatial and channel attention mechanisms were tested on
a part of dataset to test the performance and efficiency,
keeping the number of parameters in mind, before a
combination of attention and spatial and channel attention
was chosen for the entire data to be trained on.

The model was trained in 2 parts. For the first 120 epochs,
the learning rate was 1e-4 before decreasing to 1e-5.

5.1. Augmentation

In order to improve the model generalization and mitigate
over-fitting, we used some augmentation techniques as
below:

2.1 Foreground Cropping:
Crop the foreground region from the image and label.

2.2 Random Spatial Cropping:
Randomly crop a region of interest (ROI) from the

image and label with a fixed size.
2.3 Random Flipping:

Randomly flip the image and label along the spatial
axes (x, y, z) with a probability of 0.5.

2.4 Random Intensity Scaling:
Randomly scale the intensity of the image with a

factor sampled from a uniform distribution within the range
[-0.1, 0.1].

2.5 Random Intensity Shifting:
Randomly shift the intensity of the image with an

offset sampled from a uniform distribution within the range
[-0.1, 0.1].



5.2. Hyperparameters

learning rate:1e-4
roi = (128, 128, 128)
batch size = 2
sw batch size = 4 (which means slide window batch)
weight decay=1e-5
lr scheduler.CosineAnnealingLR (To balance the speed

and performance)

5.3. Post Processing

Given the initial predictions and pairwise potentials, CRF
post-processing performs inference to refine the predictions.
The goal is to find the labeling configuration that maximizes
the overall compatibility with both the initial predictions and
the pairwise potentials. The output of CRF post-processing
is the refined predictions, which have been adjusted to better
align with the underlying structure of the input data.

6. Results

6.1. Results with Proposed Architecture

This is the current saved best model’s performance on test
data:
Accuracy: dice tc: 0.9172699, dice wt: 0.9375892, dice et:
0.84364265
Which tc means tumor core, wt means whole tumor, et means
enhancing tumor. These label is transformed from the origi-
nal ones in order to compare with the baseline because they
did the same thing for step training.

Figure 7. Loss

Figure 8. Performance measurement

6.2. Prediction

This is an example of prediction using the trained model:

Figure 9. The left one is original slice, middle is ground truth, right
is our prediction

6.3. After post-processing

Table 1. Performance after post-processing

TC WT ET
Original dice 0.7741752 0.86161256 0.84151834

Dice after CRF 0.7741761 0.8550863 0.8415188

We can see from the table that implementing CRF can in-
crease the dice of central tumor and enhancing tumor. So
CRF is useful in these two labels.

7. Comparison
nn-UNet is based on the U-Net architecture, which consists
of an encoder-decoder structure with skip connections. It
has demonstrated strong performance in various medical
imaging tasks due to its ability to capture spatial information
effectively. It excels in tasks where detailed local features
are crucial, such as organ delineation and lesion segmen-
tation. However,it requires extensive data augmentation
and preprocessing techniques to handle data variability
and improve generalization. Additionally, processing 3D
volumetric data with these models can be computationally
expensive, especially for large-scale datasets.

In contrast, Swin-UNetR adopts the Swin Transformer
architecture, which replaces conventional convolutional



layers with self-attention mechanisms and tokenization
strategies. This architecture allows Swin-UNetR to capture
global context and handle long-range dependencies more
efficiently. Swin-UNetR processes image patches using
parallelizable self-attention mechanisms, potentially offering
advantages in computational efficiency and scalability,
particularly for large-scale datasets. Moreover, Swin-UNetR
has shown promising results with relatively less data
augmentation due to its ability to capture long-range
dependencies more effectively.

The performance of proposed model was compared
against Swin-UNETR and NNUnet

7.1. NNunet

NNunet is a framework which is not focussed on one model
development but on preprocessing and postprocessing of
images. Using this framework we can know how important
these are. Training loss, duration and adaptive learning rate
are shown in Figure 10:
We know it uses:
1. preprocessing: resize to voxel space = [1,1,1]
2. augmentation:crop, mirror and gamma correction.
3. postprocessing: first try the eliminate smaller part of seg-
mentation results in each patch before combine them. If this
improve the dice generally on validate set, this method will
be used for this label.
Final result: average dice: 0.9087

Figure 10. Loss,duration and learning rate of NN-unet

7.2. Swin-UNETR

Swin-UNETR has a U-shaped network design and uses a
Swin transformer as the encoder and CNN-based decoder
that is connected to the encoder via skip connections at
different resolutions. This was trained for 800 epochs using
5 fold cross-validation and using 5 ensemble Swin-UNETRs.
Our experiment using Swin-UNETR was trained for 180
epochs using fold 1 resulting in 0.79 dice score.

7.3. Comparision

Table 2. Model Performance

Model Average Dice Score

NNUnet 0.9087

SwinUNETR 0.913

Attention SwinUNETR 0.8167

8. Conclusion and discussion
1. We did not beat the SOTA(Swin UNETR), the reason
maybe the attention should be implemented in a better posi-
tion. Our attention may payed attention to less informative
parts
2. Postprocessing is useful in improving performance.Then
testing more post-processing ways like morphological
operations may be helpful in improving the performance.
3. Adding attention requires more time to train but leads to
faster convergence.

9. Future work
We plan to use more efficient transformers such as ELSA
swin transformer to help in scaling up the capacity with-
out compromising the efficiency and performance of the
model. We further plan to improve performance using cross-
validation to further generalize the model.

References
[1] Javaria Amin, Muhammad Sharif, Mudassar Raza, Tanzila

Saba, and Muhammad Almas Anjum. Brain tumor detection
using statistical and machine learning method. Computer
Methods and Programs in Biomedicine, 177:69–79, 2019. 2

[2] Yimin Cai, Yuqing Long, Zhenggong Han, Mingkun Liu,
Yuchen Zheng, Wei Yang, and Liming Chen. Swin unet3d:
a three-dimensional medical image segmentation network
combining vision transformer and convolution. BMC Medical
Informatics and Decision Making, 23, 2023. 4

[3] Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xi-
aopeng Zhang, Qi Tian, and Manning Wang. Swin-unet:



Unet-like pure transformer for medical image segmentation,
2021. 4

[4] Jie Chang, Luming Zhang, Naijie Gu, Xiaoci Zhang, Minquan
Ye, Rongzhang Yin, and Qianqian Meng. A mix-pooling cnn
architecture with fcrf for brain tumor segmentation. Journal
of Visual Communication and Image Representation, 58:316–
322, 2019. 3

[5] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan
Adeli, Yan Wang, Le Lu, Alan L. Yuille, and Yuyin Zhou.
Transunet: Transformers make strong encoders for medical
image segmentation, 2021. 3

[6] Necip Cinar, Alper Ozcan, and Mehmet Kaya. A hybrid
densenet121-unet model for brain tumor segmentation from
mr images. Biomedical Signal Processing and Control, 76:
103647, 2022. 3

[7] Hao Du, Jiazheng Wang, Min Liu, Yaonan Wang, and Erik
Meijering. Swinpa-net: Swin transformer-based multiscale
feature pyramid aggregation network for medical image seg-
mentation. IEEE Transactions on Neural Networks and Learn-
ing Systems, pages 1–12, 2022. 3

[8] Nelly Gordillo, Eduard Montseny, and Pilar Sobrevilla. State
of the art survey on mri brain tumor segmentation. Magnetic
Resonance Imaging, 31(8):1426–1438, 2013. 2

[9] Ali Hatamizadeh, Yucheng Tang, Vishwesh Nath, Dong Yang,
Andriy Myronenko, Bennett Landman, Holger Roth, and
Daguang Xu. Unetr: Transformers for 3d medical image
segmentation, 2021. 3

[10] Ali Hatamizadeh, Vishwesh Nath, Yucheng Tang, Dong Yang,
Holger Roth, and Daguang Xu. Swin unetr: Swin transformers
for semantic segmentation of brain tumors in mri images,
2022. 3, 4

[11] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu.
Squeeze-and-excitation networks, 2019. 5

[12] Lal Hussain, Sharjil Saeed, Imtiaz Ahmed Awan, Adnan Idris,
Malik Sajjad Ahmed Nadeem, and Qurat-Ul-Ain Chaudhry.
Detecting brain tumor using machines learning techniques
based on different features extracting strategies. Current
medical imaging reviews, 15 6:595–606, 2019. 2

[13] Sajid Iqbal, M. Usman Ghani, Tanzila Saba, and Amjad
Rehman. Brain tumor segmentation in multi-spectral mri
using convolutional neural networks (cnn). Microscopy Re-
search and Technique, 81(4):419–427, 2018. 3

[14] Yun Jiang, Yuan Zhang, Xin Lin, Jinkun Dong, Tongtong
Cheng, and Jing Liang. Swinbts: A method for 3d multimodal
brain tumor segmentation using swin transformer. Brain
Sciences, 12(6), 2022. 3

[15] Ailiang Lin, Bingzhi Chen, Jiayu Xu, Zheng Zhang, Guang-
ming Lu, and David Zhang. Ds-transunet: Dual swin trans-
former u-net for medical image segmentation. IEEE Transac-
tions on Instrumentation and Measurement, 71:1–15, 2022.
3

[16] Bjoern H. Menze, Andras Jakab, Stefan Bauer, Jayashree
Kalpathy-Cramer, Keyvan Farahani, Justin Kirby, Yuliya Bur-
ren, Nicole Porz, Johannes Slotboom, Roland Wiest, Levente
Lanczi, Elizabeth Gerstner, Marc-André Weber, Tal Arbel,
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